baterie litowo jonowe do samochodów elektrycznych

Prawie wszystkie rowery i hulajnogi elektryczne są zasilane bateriami litowo-jonowymi, ładowanymi z gniazda sieciowego w budynku. Wersje niespełniające norm mogą mieć poważne konsekwencje, prowadzące do pożaru i obrażeń użytkowników. – Baterie dla samochodów elektrycznych są starannie wyselekcjonowane, produkowane w znanych i Dwukrotne poprawienie wyniku typowych baterii litowo-jonowych to już nie jest ewolucja, to jest rewolucja, która może całkowicie zmienić postrzeganie samochodów elektrycznych. Jeśli teraz przeciętny pakiet baterii o pojemności 60 kWh waży około 300-350 kg (z obudową, chłodzeniem itp.), to dzięki technologii CATL wartość ta Znaczenie ma także pamięć ogniw – nowoczesne akumulatory do rowerów elektrycznych, np. litowo-jonowe, są odporne na to zjawisko, co oznacza, że można je podładowywać w niewielkim zakresie, a niekoniecznie zawsze do pełna – zalecane jest utrzymanie e-roweru na stałym poziomie doładowania baterii w przedziale między 20 a 100% Przede wszystkim warto wyjaśnić, że akumulatory i baterie nie są tym samym. Akumulator można wielokrotnie ładować i rozładowywać, podczas gdy bateria jest przeznaczona do jednorazowego użytku. Akumulatory stosowane w samochodach elektrycznych to zazwyczaj akumulatory litowo-jonowe (Li-Ion). Baterie litowo-niklowo-manganowo-kobaltowe (LiNiMnCoO2) – NMC. Mniej więcej do 2020 roku, baterie NMC były niekwestionowanym liderem wśród baterii litowo-jonowych. Jeszcze w 2022 roku stanowiły ok. 60% rynku. Jednak w związku z pożarami samochodów elektrycznych, producenci samochodów stopniowo rezygnują z NMC na korzyść LFP. nonton drama call it love sub indo. Niemiecki producent samochodów osobowych Daimler nieustannie pracuje nad systemem akumulatorów do samochodów elektrycznych. Eksperci zaangażowani ten projekt szczegółowo rozpatrują sposoby przechowywania energii, prowadzą badania, aby powstał najlepszy model akumulatora. Mając świadomość, że stanowi on podstawową część samochodu, analizują poszczególne aspekty techniczne i zmierzają do modernizacji akumulatorów generacja akumulatorów do samochodów elektrycznychEksperci w dziedzinie motoryzacji pracują nad stworzeniem akumulatora nowej generacji. Skupiają się nad zarządzaniem ciepłem, które znacząco wpływa na wydajność i długość użytkowania wprowadza na rynki światowe swój najnowszy model samochodu elektrycznego Mercedes EQC, który został wyposażony w akumulator litowo-jonowy z pojemnością 80 kWh, czego efektem jest zasięg od 374 do 417 km a także bardzo wydajny elektryczny napęd rozwiązania technologiczne budzą coraz większe zainteresowanie samochodami z napędem także >> Przelicznik KW na KM – sprawdź dlaczego trzeba przeliczaćMimo dużej wydajności tych nowoczesnych akumulatorów, producent samochodów nadal pracuje nad wprowadzeniem zmian, ulepszeń, które pozwolą stworzyć alternatywę dla baterii litowo-jonowych. Nie chodzi tylko o czas ładowania i gęstość energii, ale stabilny rozwój. Innowacyjnym pomysłem jest wszechstronne podejście do produkcji akumulatorów z wykorzystaniem sto procent energii z odnawialnych tylko pojemność akumulatora jest istotna?Najważniejszą kwestią, jaka brana jest pod uwagę przy projektowaniu nowej generacji akumulatorów jest bezpieczeństwo, wszelkie wprowadzane zmiany nie idą na kompromis w tym aspekcie. Daimler posiada wiele zastosowań baterii nie tylko do samochodów osobowych, ale również do Mercedesów dostawczych, autobusów i ciężarówek. Akumulatory 48-woltowe znalazły zastosowanie do napędu hybrydowego oraz do samochodów także >> Linia akumulatorów Uruchom® KamperProdukcja samochodów wiąże się z wykorzystaniem dużej ilości różnych surowców w tym pochodzących z zasobów naturalnych. Zrównoważony rozwój nastawiony jest na ich znaczne ograniczenie, dlatego prowadząc badania nad nowymi rozwiązaniami w odniesieniu do akumulatorów, eksperci dążą do zastąpienia cennych materiałów, zmniejszając ich uwagę brany jest recykling pozwalający na efektywniejsze wykorzystanie pozyskanych już surowców. Wpłynie to korzystnie na kwestię środowiskową produkowanych samochodów, które obecnie w 95% podlegają podaje, że za 10 lat na rynku pojawią się akumulatory do recyklingu, dzięki czemu będzie można odzyskać tak cenne surowce jak: nikiel, kobalt, miedź a także działania podejmowane są na razie na bateriach testowych, ale są już opracowane procesy zastosowania surowców wtórnych w cyklu używane obecnie do produkcji akumulatorów Akumulatory litowo-jonowe zawierają dwie metalowe folie miedziane lub aluminiowe, pomiędzy nimi są 2 elektrody, czyli anoda i katoda, między którymi dochodzi do reakcji elektrycznej, która potrzebuje takiego metalu jak lit. Katoda generuje największe koszty, ponieważ w jej skład wchodzą: mangan nikiel i kobalt, natomiast anoda zawiera lit, elektrolity, proszek grafitowy i separator. Trwające badania zmierzają do zastąpienia proszku grafitowego krzemem, co pozwoli osiągnąć większą gęstość energii w bateriach o 20-25%. Ponadto krzem poprawia szybkość ładowania. Również możliwe okazuje się zastąpienie kobaltu innymi materiałami, potwierdzają to prowadzone badania nad nową generacją akumulatorów. Surowce takie jak kobalt i lit mogą zostać zastąpione materiałami opartymi na manganie, który jest prostszy w dla akumulatorów litowo-jonowych są baterie litowo-siarkowe. Jak wiadomo, siarka należy do odpadów przemysłowych, który można w prosty sposób poddać recyklingowi. Jednak do wprowadzenia takiej techniki w samochodach osobowych potrzeba jeszcze wielu również badania nad zastąpieniem litu, jest to możliwe, dzięki wprowadzeniu w jego miejsce się, że obecnie nie ma zamiennika dla akumulatora litowo-jonowego. Okazuje się, że w niektórych zastosowaniach jest to jednak możliwe. Mowa jest o baterii półprzewodnikowej zawierającej stały elektrolit, znajdzie ona zastosowanie w autobusie Mercedes-Benz eCitaro już w drugiej połowie 2020 roku. Innowacyjna technologia posiada długi cykl życia, akumulator w swoim składzie nie ma niklu, kobaltu i manganu. W tym przypadku niższa jest gęstość energii, dlatego bateria ładuje się wolniej i ma duży rozmiar. Posiada zastosowanie do pojazdów użytkowych, ale do samochodów osobowych jest nieodpowiednia. Każdy nosi je przy sobie, a mało kto wie jak działają. Zapraszam na artykuł odkrywający tajemnicę tych niezwykłych akumulatorów. Dawno, dawno temu… Zacznijmy może od ciekawostki. Czy wiesz, że pierwszy akumulator powstał przeszło 160 lat temu? Był to model ołowiowo-kwasowy, zbudowany w 1859 roku przez niejakiego Gastona Planté. I choć świat od tamtej pory poszedł mocno do przodu, to poczciwym ,,kwasówkom” udało się jakoś przetrwać do dziś. Wszystko dzięki ich zdolności do błyskawicznego dostarczenia ogromnej mocy, jakiej wymagają chociażby rozruszniki samochodów spalinowych. Nie bez znaczenia jest też ich niska cena – akumulatory kwasowo-ołowiowe do dziś nie mają pod tym względem konkurencji. Spieszmy się kochać akumulatory kwasowe – za 15 lat będą gatunkiem mocno zagrożonym Ponad pół wieku później, w 1908 roku Thomas Alva Edison zaprezentował światu akumulator niklowo-żelazowy (Ni-Fe). Skonstruował go z myślą o elektrycznych samochodach (tak, ta technologia również jest niezwykle stara). Niestety koszt produkcji ogniw Ni-Fe okazał się na tyle duży, iż nie znalazły one powszechnego zastosowania. Niszą, do której pasowały idealnie, okazały się segmenty urządzeń przeznaczonych do pracy pod ziemią oraz elektrycznych pociągów (dla których ,,kwasówki” były niewystarczające). Co ciekawe z akumulatorów Ni-Fe do dziś korzystają lokomotywy serwisowe londyńskiego metra (uruchamiane w razie braku prądu w mieście). Niedługo potem, po 10 latach wytężonych prac Waldemara Jungnera, w 1909 roku pojawiły się pierwsze akumulatory niklowo-kadmowe (Ni-Cd). Ich kariera bardzo szybko nabrała rozpędu, głównie za sprawą w miarę przystępnej ceny i obu Wojen Światowych. Stąd, w pierwszej połowie XX wieku, akumulatory Ni-Cd były podstawowym źródłem energii sprzętu wojskowego: od lotnictwa (rozruch silników), przez technologię komunikacyjną, na zasilaniu słynnych pocisków rakietowych V-2 kończąc. Po II Wojnie Światowej nastała era tranzystorów i miniaturyzacji, a wraz z nią potrzeba tworzenia coraz to lżejszych i mniejszych akumulatorów. Wtedy też w latach 60-tych Volkswagen opracował ogniwa niklowo-metalowo-wodorkowe (NiMh). Akumulatory te po pewnym czasie (i kilku usprawnieniach) były w stanie przechować ponad 2 razy więcej energii niż ich starsi, kadmowi bracia o tych samych gabarytach. Do tego NiMh’y były jeszcze tańsze w produkcji, przez co w latach 80-tych praktycznie przejęły rynek akumulatorów. I choć na horyzoncie majaczyła już bardzo obiecująca technologia litowa, to ogniwa NiMh bardzo długo pozostały podstawowym źródłem energii tanich elektronarzędzi, aparatów fotograficznych, zdalnie sterowanych zabawek, a nawet samochodów elektrycznych (Toyota Prius, Honda Civic Hybrid, czy Forde Espace Hybrid). Niestety ani niska cena, ani niezłe parametry, nie mogły dawać szans w starciu ze zbliżającym się wielkimi krokami litem. Ten niepozorny pierwiastek już wkrótce miał zadecydować o tym jak będzie wyglądał nadchodzący XXI wiek. Akumulatory litowo-jonowe w telefonach goszczą już od 20 lat W 2019 roku John Goodenough, Stanley Whittingham i Akira Yoshino zostali uhonorowani nagrodą Nobla w dziedzinie chemii za opracowanie i rozwój akumulatorów litowo-jonowych. To właśnie ta trójka zauważyła potencjał drzemiący w licie jeszcze w latach 70-tych i rozpoczęła nad nim badania. Pierwszy akumulator działający w oparciu o lit opracowała firma Exxon już w 1978 roku. Choć trzeba nadmienić, że określenie ,,działający” użyte jest tutaj nieco na wyrost. Tak naprawdę potrzeba było kolejnych kilkunastu lat wytężonej pracy, by wreszcie w 1991 roku firma Sony wypuściła w pełni bezpieczne, sprawne, niezwykle wydajne i dostępne dla każdego Kowalskiego akumulatory litowo-jonowe. Ich rewolucyjne wręcz parametry nie pozostawiały złudzeń: ,,litówki” rozpoczęły właśnie ekspansję, której nie da się już powstrzymać. Dziś, po około 30 latach od ich narodzin, trudno byłoby znaleźć osobę, która nie ma choć jednego takiego akumulatora przy sobie (w telefonie, czy zegarku) i co najmniej kilku w domu. Co takiego sprawiło, że lit wyparł wszystkie inne konstrukcje? Dlaczego wybór padł właśnie na ten pierwiastek i co jest w nim takiego niezwykłego? Zapraszam do dalszej części artykułu! Sztuka pozyskiwania energii Pierwiastek lit odkryty został już w 1817r.. To oznacza, że musiało minąć niemal 150 lat, nim w ogóle zaczęto brać go pod uwagę w roli składnika akumulatorów. Dlaczego trwało to tak długo? Z bardzo prostego powodu – lit to dość problematyczny i trudny do okiełznania pierwiastek. Aby dokładnie zrozumieć jego wady i zalety musimy zacząć od absolutnych podstaw. Zasadniczo wszystkie akumulatory (jak i zwykłe baterie) to pojemniki wypakowane związkami chemicznymi – związkami, które reagując ze sobą potrafią produkować prąd. I to właśnie ten prąd jest tutaj kluczem, bowiem to on niesie ze sobą życiodajną energię elektryczną, bez której żadne urządzenie elektryczne nie może działać. Ale w jaki sposób prąd elektryczny transportuje energię do naszego smartfona? To proste. Prąd to nic innego jak strumień pędzących przed siebie elektronów. No może z tym ,,pędzących” nieco przesadzam, bo elektrony są tak naprawdę potwornie powolne. Czasami jednak nie liczy się prędkość, a ilość i pod tym względem, w trakcie każdej sekundy, przez nasze smartfony przesączają się tryliony tych ,,małych kuleczek”. Każdy kto zgłębiał fizykę kwantową wie, że myślenie o elektronach jak o ,,małych kuleczkach” to zabawa dobra dla przedszkolaków. Ale czy to źle? Elektrony są tak małe, że nawet z pomocą najlepszych mikroskopów i tak nie jesteśmy w stanie ich dostrzec. Kto wie, może tak naprawdę mają one kształt kwadratów, trójkątów, albo żelkowych misiów Haribo? Zresztą kształt w kwestii transportu energii nie ma najmniejszego znaczenia. Tak naprawdę chodzi o sam ruch cząsteczek i idące za nim konsekwencje. Biorąc do ręki kamień i rzucając go przed siebie nadajesz mu pewną prędkość. A jeśli weźmiemy pod uwagę również masę kamienia, to wówczas możemy mówić o czymś, co fizycy nazywają pędem. Im większa prędkość kamienia i im większa jego masa, tym większy jest jego pęd. Nie muszę chyba tłumaczyć jak spotkanie takiego pędzącego kamienia i dajmy na to okna twojego sąsiada może się zakończyć? Fizycy taką zdolność rozpędzonych przedmiotów do czynienia destrukcji nazywają przekazywaniem energii. Miło, prawda? Mechanicznie wygląda to tak: rzucając kamieniem zużywasz energię swoich mięśni. Im więcej jej zużyjesz, tym oczywiście bardziej się zmęczysz, ale też kamień nabierze większej prędkości i będzie miał więcej energii do zrobienia tego, po co go wysłałeś – prosta kalkulacja. A teraz najciekawsze – kiedy kamień trafia w swój ostateczny cel, czyli w naszym przykładzie okno sąsiada, to następuje kolejna wymiana energii. Kamień w wyniku uderzenia musi wyhamować, a więc traci energię. To ile jej utraci zależy od tego jak mocno wyhamuje. I tutaj do gry wkracza okno, które cały ten impet musi przyjąć na siebie. Jeśli energii nie było dużo (kamień był lekki i leciał wolno), to szyba zadrży złowieszczo (ale jakoś to wytrzyma), a kamień się odbije. Natomiast jeżeli tej energii będzie za dużo (ciężki kamień, diabelnie szybki), szyba odkształci się tak mocno, że zwyczajnie pęknie, a kamień, lekko tylko spowolniony, poleci sobie dalej. Przykład może i drastyczny, ale doskonale obrazuje to, co dzieje się z elektronami. Jeżeli tylko uda nam się je rozpędzić i skierować do naszego smartfona, wówczas zaczną one trzeć i rozbijać się o zamkniętą w nim elektronikę, przekazując mu w ten sposób energię. Jeżeli wpuścimy tej energii zbyt dużo, to ta delikatna elektronika rozleci się na kawałki tak samo jak szyba. Na szczęście o odpowiednie dawki energii martwi się już sam telefon, więc nie będziemy się tym faktem teraz zajmować. Wiesz już, że prąd, a więc strumień rozpędzonych elektronów może nieść ze sobą energię. Nie przez przypadek elektryczność oparta jest na elektronach – to właśnie te cząstki, a nie na przykład protony, czy neutrony jest najłatwiej zmusić do ruchu. Ale jak? To również jest bardzo proste. Wystarczy zebrać ich ogromną ilość w jednym miejscu i je tam zamknąć. I to tyle? Owszem, bo nie wiem czy wiesz, ale z elektronami jest podobnie jak z ludźmi. Zamknij większa grupę w małym pomieszczeniu, a bardzo szybko zauważysz jak zaczną się wiercić, rozpychać i walić w drzwi, byś ich wypuścił. Elektrony również nie lubią swojego towarzystwa i najchętniej trzymają się z dala od siebie. Tak wyglądają elektrony zamknięte w kuli. Starają się uciec jak najdalej od siebie. Nie ma to oczywiście nic wspólnego z uczuciami. Po prostu elektrony obdarzone są tak zwanym ,,ładunkiem ujemnym”, a fizyka mówi nam, że cząstki o tym samym ładunku zawsze będą się wzajemnie odpychać. Więcej szczegółów na ten temat możesz w wolnej chwili przeczytać tutaj: Czym jest ładunek elektryczny? – artykuł na Elektrony chcą uciec od siebie, ale zamknięte w takim akumulatorze, czy baterii nie za bardzo mają dokąd. Rozwiązanie pojawia się, gdy akumulator taki włożymy do telefonu. Obwody naszego smartfona stają się wówczas jedyną drogą ucieczki, choć oczywiście istnieje pewien haczyk. Droga ta jest bowiem prawdziwym torem przeszkód usianym kondensatorami, rezystorami, tranzystorami i innymi ,,-torami”. Na szczęście dla nas te biedne, bogu ducha winne elektrony wolą trochę się przemęczyć i poobijać, niż spędzić ze sobą choćby kolejną sekundę w zamknięciu. Tym oto sposobem nasz telefon zdobywa energię, a elektrony płyną sobie przed siebie do… No właśnie, gdzie? By osiągnąć wieczny spokój? Niestety podstawową funkcją akumulatorów jest możliwość ich ponownego naładowania i wykorzystania. Z tego też powodu nie możemy ot tak wypuścić na wolność opuszczających nasz telefon elektronów. Zamiast tego musimy je zmagazynować, na przykład po drugiej stronie akumulatora, gdzie będą grzecznie czekały na transport z powrotem, by cały horror… to znaczy proces rozpoczął się od początku. Łatwiej powiedzieć, niż zrobić Z opisu wszystko wydaje się proste – elektrony płyną obwodami naszego telefonu w jedną stronę, a potem ładując akumulator przenosimy je z powrotem i cykl możemy zacząć od nowa. Niestety rzeczywiste wykonanie takiego mechanizmu to zupełnie inna bajka. Dlaczego? Wcześniej wspomniałem choćby o tym, że elektrony są tak małe, iż nawet nie wiemy jak wyglądają. Tym bardziej trudno byłoby nam złapać je w siatkę i ot tak zamknąć po jednej stronie akumulatora. Potem musielibyśmy jeszcze liczyć na to, że spokojnie popłyną na jego drugą stronę i tam ponownie dadzą się zamknąć. Nierealne. Jak to się w takim razie robi? Na czym polega sztuczka? Zacznijmy może od przypomnienia czegoś, co napisałem kilka akapitów wcześniej: Baterie i akumulatory wypełnione są związkami chemicznymi, które reagując ze sobą potrafią produkować prąd. Zamiast głowić się nad tym skąd wziąć pojedyncze elektrony, możemy wykorzystać fakt, że ich najlepszym źródłem są atomy – w końcu elektrony latają wokół ich jąder całymi chmarami. Ponadto same atomy bardzo często zbijają się w większe skupiska zwane molekułami, albo tworzą szereg jeszcze większych związków chemicznych. Te jesteśmy w stanie nie tylko bez trudu dostrzec, ale i zamknąć gdzie chcemy i w jakiej ilości chcemy. Oczywiście na koniec pozostaje jeszcze kwestia przekonania atomów do tego, by oddały nam swoje elektrony, a to nie zawsze jest takie łatwe… Na szczęście wybór jeśli chodzi o dawców mamy spory, bowiem przebierać możemy wśród 118 różnych pierwiastków. Warto wiedzieć, że każdy z nich ma swój indywidualny numer zwany liczbą atomową, która to wprost określa ile elektronów wiruje wokół jądra danego pierwiastka. Wszystko to niezwykle przejrzyście widać na tablicy Mendelejewa. Wybór nie jest rzecz jasna zupełnie dowolny – niektóre z pierwiastków są bardziej podatne na współpracę, inne mniej. Są też takie, których nie ma nawet sensu przekonywać – tych maruderów zaznaczyłem na biało. Dlaczego nie ma to sensu? Większość z nich to po prostu pierwiastki radioaktywne, a takich atrakcji w domowych akumulatorach raczej nie chcemy. Z kolei biała kolumna widoczna po prawej stronie tablicy (poczynając od helu) to tak zwane gazy szlachetne. Nazwano je tak dlatego, że są zbyt szlachetne, by oddać swoje elektrony na poczet zasilania jakiejś prostackiej elektroniki. Tak przynajmniej słyszałem… Wykluczając te ,,białe plamy” pozostaje nam 76 pierwiastków, które w naturze mieszają się i łączą co potencjalnie daje tysiące przeróżnych związków chemicznych. Związków, które mogą dać nam to, czego potrzebujemy. A czego potrzebujemy? Tak jak mówiłem – po jednej stronie akumulatora muszą znaleźć się związki chemiczne, które reagując ze sobą chętnie oddadzą elektrony, a po drugiej takie, które te elektrony przyciągną do siebie i przechowają do czasu ponownego naładowania. W 1800 roku niejaki Alessandro Volta odkrył pierwszą taką parę reakcji. Okazało się, że jeśli rozpuścimy cynk (Zn) w odpowiednim roztworze, to bez problemu odda nam on 2 elektrony. Z drugiej strony miedź (Cu) nie za bardzo lubi takie rozpuszczanie i z nieukrywaną radością zapewni schronienie dwóm elektronom, dzięki którym będzie w stanie się z takiego roztworu wydostać (fachowo mówimy wytrącić). I o ile taka uczciwa, jednostronna wymiana elektronów między cynkiem i miedzią stała się podstawą pierwszej w historii baterii, to niestety proces ten jest nieodwracalny. Oznacza to, że w trakcie tejże wymiany, w strukturze związków zachodzą pewne trwałe zmiany i nie możemy takiej baterii ot tak podłączyć do ładowarki i przetransportować elektronów z powrotem. Tak przynajmniej było 200 lat temu, bowiem dzisiejsza znajomość chemii i technologii pozwala stworzyć baterie oparte na cynku i miedzi, które można powtórnie naładować. To już jednak zupełnie inna historia. Pierwszą w pełni odwracalną parą reakcji była ta odkryta przez wspomnianego Gastona Planté, ochrzczona mianem akumulatora kwasowo-ołowiowego. Ołów zamknięty z jednej strony akumulatora reaguje z roztworem kwasu siarkowego, oddając po drodze 2 elektrony. Po drugiej stronie zamknięty jest tlenek ołowiu. Ołów bardzo chce oderwać się od tlenu, a do tego potrzebuje… zgadłeś, dokładnie dwóch zbłąkanych elektronów. Jak wspomniałem obie reakcje są w pełni odwracalne. To znaczy, że możemy podłączyć taki akumulator do ładowarki i ona, za pomocą energii pobieranej z gniazdka, siłą wyrwie przesłane elektrony z drugiego końca (ołów na powrót połączy się z tlenem) i przetransportuje je z powrotem na początek, wpychając je do atomu ołowiu (który wcześniej je porzucił). Zauważ, że w przypadku historii cynku i miedzi oraz ołowiu i jego tlenku piszę jedynie o dwóch przekazywanych elektronach. Ale dlaczego tylko dwóch? Miedź (Cu) i cynk (Zn) mają kolejno 29 i 30 elektronów, a ołów ma ich aż 82! Odbieranie mu tylko dwóch elektronów, skoro ma ich aż tyle wydaje się marnotrawstwem potencjału. W końcu im więcej elektronów zabierzemy, tym więcej energii mamy do wykorzystania, prawda? Jasne, ale wyciągnięcie elektronu z orbity też kosztuje. Pamiętasz o sile i energii naszych mięśni zdolnej rzucić kamieniem? Elektron również nie pomknie przed siebie ot tak, bo potrzebuje do tego energii. Energii, której źródłem są reakcje chemiczne. Prawdziwy problem tego mechanizmu odkryjemy, kiedy spojrzymy w tabelę energii potrzebnej do jonizacji pierwiastków (jonizacji, czyli właśnie odebrania bądź dołożenia im elektronów). Pokaże nam ona, że wyrwanie pierwiastkowi każdego kolejnego elektronu wymaga średnio dwa razy więcej energii niż poprzedniego. W rezultacie jesteśmy w stanie zmusić większość atomów do oddania jednego elektronu – łatwizna. Odebranie drugiego wymaga już dwa razy więcej energii, ale zwykle nie jest to aż tak duża wartość – da się zrobić. Trzeci elektron to już 4 razy więcej energii niż na początku. Niewiele znanych nam reakcji, które możemy bezpiecznie zamknąć w akumulatorze to potrafi. Cztery i więcej elektronów to już temat poza naszym zasięgiem. No chyba, że zamontujemy w akumulatorze mikroskopijne działo laserowe zdolne wybijać z atomów dowolną ilość elektronów… Tak, w takim wypadku nie byłoby problemu. Wspomniane elektronowe ograniczenie całkowicie zmienia zasady gry. W tym momencie nie zależy nam na zastosowaniu pierwiastków o dużej ilości elektronów, bo i tak wyciągniemy z nich dwie, góra trzy sztuki. Jest to o tyle istotne, że im więcej elektronów ma pierwiastek, tym automatycznie więcej protonów i neutronów znajduje się w jego jądrze i przez to cały atom staje się cięższy. Czy jest w takim razie sens pakować do akumulatora duże i ciężkie atomy ołowiu (82 elektrony), skoro równie dobrze 2 elektrony możemy wyciągnąć ze znacznie lżejszych pierwiastków? Między innymi ten właśnie czynnik sprawia, że akumulatory oparte o nikiel (Ni-Fe, Ni-Cd, NiMh) są w stanie wygenerować od 2 do 4 razy więcej energii z każdego kilograma akumulatora, niż ich ołowiowi kuzyni wagi ciężkiej. I choć nikiel nie jest specjalnie mniejszy od atomu ołowiu, to związki chemiczne jakie wykorzystuje w swoich reakcjach można z łatwością sprasować, zwinąć w rulonik i zamknąć w małej, cylindrycznej obudowie. Akumulatory kwasowe i zachodzące w nich reakcje wymagają znacznie więcej przestrzeni. Skoro ołów jest tak nieporęczny, to dlaczego oparte o niego akumulatory wciąż zasilają rozruszniki w naszych autach? Z racji tego, że w samochodach mamy sporo miejsca, a przy dwóch tonach stali na kółkach akumulator ważący kilka kilogramów nie robi różnicy, to na korzyść kwasówek przeważają trzy rzeczy: Po pierwsze do dziś pozostają one najtańszym rodzajem akumulatorów. Ołów nie jest może tak powszechny w skorupie ziemskiej jak nikiel, ale za to jego pozyskanie jest dość tanie, tak jak zresztą potrzebnego do reakcji kwasu siarkowego. Oprócz tego cały akumulator jest na tyle prosty w budowie, że teoretycznie sam mógłbyś zrobić sobie taki w sprawa to całkiem niezłe napięcie generowane przez taki akumulator. Bo widzisz w chemii baterii, oprócz ilości oddanych elektronów, istotne jest to jak bardzo dany związek chce się ich pozbyć, lub je przyjąć. Im bardziej, tym z większą prędkością elektrony są wyrzucane z jednej i zasysane z drugiej strony ogniwa. Większa prędkość to, tak jak w przypadku kamienia, więcej energii, którą elektrony zostawią, obijając się o elektronikę naszych urządzeń. Zamknięta w akumulatorach kwasowo-ołowiowych chemia generuje napięcie rzędu 2 V, co nie jest takim złym wynikiem w porównaniu do 1,2 V w Ni-Cd i NiMh. Oczywiście akumulatory w naszych samochodach mają aż 12 V, ale to wynika jedynie z połączenia w jego wnętrzu 6 mniejszych akumulatorów i ostatnia sprawa to moc. Każda reakcja chemiczna zachodzi z określoną prędkością, a ta związana z ołowiem i kwasem siarkowym zachodzi niezwykle szybko. W połączeniu z dość wysokim napięciem ogniwa, pozwala to wytworzyć w ułamku sekundy ogromną moc potrzebną do wystartowania rozruszników samochodowych (prąd płynący z akumulatora osiąga wartość rzędu kilkuset amperów). Komponenty Ni-Cd oraz NiMh nie potrafią przewodzić tak ogromnego prądu, a ich zwarta konstrukcja sprawia, że są one znacznie bardziej wrażliwe na rosnącą przy okazji takiego prądu temperaturę. Ich przewagą nad ołowiem jest z kolei znacznie większa ilość zmagazynowanej energii, która, jeśli tylko nie potrzebujemy jej szybko wyciągnąć, może nam posłużyć znacznie, ale to znacznie dłużej. Telefony komórkowe i inna przenośna elektronika to zupełnie inny temat niż rozrusznik samochodu. W tym wypadku niewielki rozmiar i waga to klucz do sukcesu. Chcemy aby nasz telefon miał duży ekran i był szybki, a do tego zamknięty był w małej i cieniutkiej obudowie. Badacze doskonale rozumieli kierunek w jakim idzie przemysł urządzeń przenośnych, dlatego też za cel obrali sobie stworzenie najlżejszych na świecie i najpojemniejszych akumulatorów w historii. Aby to zrobić, musieli spróbować okiełznać jeden z najlżejszych dostępnych nam pierwiastków… W tym momencie na scenę (cały na biało) wkracza lit (Li). Na tablicy Mendelejewa oznaczony jest dumnym numerem 3, a to sprawia, że jest on jednym z najlżejszych znanych nam pierwiastków – pod tym względem przegrywa jedynie z wodorem i helem. W licie ciekawe jest również to, że będąc pierwiastkiem lżejszym od takiego tlenu czy azotu, w przeciwieństwie do nich jest ciałem stałym. Dzięki temu jego atomy są ciasno upakowane, a taki zwarty materiał znacznie łatwiej jest obrobić i zamknąć w niewielkim akumulatorze. Jasne, gazy można przecież potraktować wysokim ciśnieniem i skompresować, ale skoro mamy super-lekki lit, to po co kombinować? Lit (nie jako atom, a jako kawałek materii) waży mniej więcej tyle co drewno sosnowe. Jego gęstość to jakieś 0,51 g/cm3, a to oznacza, że jest on niemal dwukrotnie lżejszy od wody, jakieś 16 razy lżejszy od niklu i 20 razy lżejszy od ołowiu. Idealny przepis na super-lekkie baterie! Z drugiej jednak strony waga piórkowa kompletnie nie przekłada się na rozmiar atomu. Choć lit ma tylko po trzy protony, neutrony i elektrony, to w rzeczywistości ponad połowa tablicy Mendelejewa jest od niego mniejsza! W tym ołów, który przypomnę ma aż po 82 sztuki protonów, neutronów i elektronów. Względny rozmiar atomów; źródło danych: To, że atom zbudowany z 20 razy większej liczby cząsteczek, będący 20 razy cięższy może być jednocześnie mniejszy, to dość skomplikowana do wyjaśnienia kwestia. Orbity wokół atomów potrafią być naprawdę pokręcone, jądro atomowe przyciąga elektrony z różną siłą, a te oddziałują również ze sobą nawzajem. Ostateczny wynik jest taki, że choć lit jest najlżejszy i oparte o niego akumulatory również takie będą, to rozmiar jego atomów wcale nie sprawia, że możemy zamknąć tego litu w małej baterii nie wiadomo ile. Patrząc z perspektywy atomowej to zajmuje on praktycznie tyle samo miejsca co ołów. A może akumulatory litowe nie są wcale tak fantastyczne jak wszyscy nam mówią? Bez obaw – są świetne. Cała tajemnica baterii litowo-jonowych tkwi tak naprawdę w określeniu „jonowy”. Jonizowanie to, jak już wspomniałem, ładne określenie na odbieranie bądź dokładanie atomom elektronów. Kiedy pierwiastek odda elektron lub jakiś przyjmie, wówczas nazywamy go jonem. Lit w standardzie ma 3 elektrony. Dwa z nich znajdują się na tyle blisko jądra atomowego i są przez nie tak mocno przyciągane, że możemy o nich zapomnieć. Za to do opisania trzeciego elektronu najlepiej pasuje określenie ,,kula u nogi”. Wiem, brzmi zabawnie, ale w tym wypadku nie przesadzam. Lit chce się tego trzeciego elektronu pozbyć tak bardzo, że wchodzi w reakcję z niemal wszystkim co spotka na swojej drodze – nawet z wodą, czy powietrzem! Myślisz pewnie: „Co z tego, to tylko jeden elektron. Słabo!”. Nie daj się jednak zmylić pozorom – lit tak bardzo chce zostać jonem, że w trakcie oddawania tego jednego elektronu generuje napięcie rzędu 3,2 – 3,8 V! To sprawia, że każdy jeden uwolniony przez lit elektron niesie ze sobą 3 razy więcej energii niż ten z akumulatorów niklowych i dwa razy więcej niż ten z kwasówek. No tak, ale ołów daje przecież dwa elektrony, więc gdzie ta przewaga litu? Już tłumaczę. Każdy akumulator do oddania i przyjmowania elektronów wykorzystuje reakcje chemiczne – są one jedynym możliwym źródłem potrzebnej do tego energii. Naukowcy, którzy otrzymali Nobla za opracowanie litowych akumulatorów tak naprawdę dostali go za to, że… poniekąd oszukali lit. Wiedzieli oni, że zmuszenie tego pierwiastka do oddania elektronu to nie sztuka – jednorazowe baterie litowe istniały od lat. Problemem było znalezienie takiej reakcji, poprzez którą po drugiej stronie akumulatora lit chętnie przyjmie odrzucony elektron z powrotem. Oczywiście kilka takich reakcji udało się znaleźć, ale wszystkie one miały swoje ograniczenia i istotne wady, całkowicie niweczące potencjał litu. Wtedy nagle, w latach 70tych ktoś wpadł na pomysł, że żadna reakcja nie musi tak naprawdę zachodzić, dopóki lit nie będzie o tym wiedział. Oszustwo godne Nobla Atom litu z trzema elektronami na pokładzie jest dość duży. Kiedy jednak odda swój elektron i stanie się jonem, wówczas jego średnica zmniejsza się praktycznie dwukrotnie. Jest on wówczas o ponad 20% mniejszy od ołowiu, który już oddał dwa elektrony! Przyznasz, że to dość spora różnica. Do tego naukowcy odkryli strukturę zwaną tlenkiem kobaltu. Okazało się, że jon litu ma akurat taką wielkość, że idealnie wpasowuje się w wąskie szczeliny między warstwami tego związku. Dodatkowo kobalt nie jest zbyt wybrednym pierwiastkiem i potrafi zaopiekować się dodatkowym elektronem, jaki przy okazji oddaje mu lit. Ostatecznie taki tlenek kobaltu z powtykanym tu i ówdzie litem nazywamy tlenkiem kobaltu litu (LiCoO2) i jest to podstawowy związek wykorzystywany w akumulatorach litowo-jonowych. A i przy okazji mogę dodać, że taki proces wciskania atomów w strukturę jakiegoś związku nazywa się interkalacją. Lit czuje się w takim układzie częścią związku, choć nie tworzy z nim pełnoprawnego wiązania. Kobaltowi jest właściwie wszystko jedno, więc możemy uznać, że wszyscy są zadowoleni. Tam jednak gdzie wszyscy są szczęśliwi nie ma żadnej energii elektrycznej do wykorzystania. My musimy sprawić, by litowi było niewygodnie, by chciał zmienić stan, w jakim się znalazł. W tym celu podłączamy taki tlenek kobaltu litu do ładowarki i zaczynamy wysysać elektrony. Akcja ta na kobalcie nie robi żadnego wrażenia – jest on metalem podobnym do miedzi i żelaza, czyli przewodnikiem, który nie do końca dba o to, czy zwiniemy mu jakiś elektron. A już z pewnością nie będzie mu szkoda tego, który przed chwilą otrzymał od litu. Niestety sytuacja ta stawia jon litu w bardzo trudnym położeniu. Wcześniej oddał on ujemnie naładowany elektron, przez co sam stał się nieco dodatnio naładowany. Teraz elektron ten wypompowaliśmy na zewnątrz, przez co cała struktura tlenku kobaltu stała się delikatnie dodatnia. Fizyka jest w tej kwestii nieubłagana – dodatni tlenek kobaltu zacznie odpychać dodatni jon litu. Pamiętasz jak wspominałem o tym na początku artykułu? Takie same ładunki, czy to dodatnie, czy ujemne będą się zawsze odpychać. Tlen i kobalt trzymają się siebie mocno – to dość zwarta struktura pełniąca rolę swego rodzaju rusztowania. Jony litu, które powciskały się gdzie mogły, ale do niczego się tak naprawdę porządnie nie przyczepiły, zostają wypchnięte ze struktury. Lit nie ma się dokąd udać – z elektronem było mu źle, ale bez niego i na dodatek bez innych atomów, do których może się przykleić jest jeszcze gorzej. Nie wiedząc co zrobić odwraca się i oto widzi światełko w tunelu. Tam, po drugiej stronie akumulatora roztacza się niebieskawy blask i przyciąga go jakaś tajemnicza siła. Jak gdyby tam było jego miejsce… Lit przemierza wnętrze akumulatora, przeciskając się przez nasączony elektrolitem separator, który dzieli akumulator na dwie części. Za nim widzi kolejny układ warstw, tym razem upiornie czarny. Nim zdąży wyhamować, ciągnięty tajemniczą siła wpada między warstwy ciemnej, grafitowej struktury i grzęźnie tam, nie mając siły się wyrwać. Spogląda w głąb i widzi, że w tej samej strukturze uwięzione są znajome elektrony… Tak, to dokładnie te same elektrony, które on i inne jony litu przed chwilą oddały kobaltowi. Lit orientuje się, że tajemnicza, przyciągająca siła i niebieskawy blask pochodziły właśnie od nich – morza ujemnie naładowanych elektronów, do których dodatnio naładowany jon litu czuje naturalny pociąg. Uwięziony lit nie jest jednak z tego faktu zadowolony. Nie chce na powrót łączyć się z elektronami. Niestety z jednej strony cała ich chmara wciąga go w głąb grafitowej struktury, z drugiej zaś wciąż odczuwa odpychające echo kobaltu. W ten oto sposób lit wpada w pułapkę. W wymyślone przez genialnych konstruktorów oszustwo, pozwalające utrzymać go w niewygodnym położeniu. Lit grzęźnie wewnątrz tego grafitowego labiryntu i to bez pomocy jakiejkolwiek reakcji chemicznej. Oczywiście nie spędzi on tam wieczności. Musi jedynie wytrzymać do momentu, w którym do akumulatora podłączymy jakiś odbiornik. Wpinając akumulator do np. telefonu, elektrony zyskują drogę ucieczki – grafit nie jest dla nich tak gościnny jak kobalt, stąd czują się w jego strukturze jak sardynki zamknięte w puszce. Słysząc ciche, niosące się przewodami nawoływanie kobaltu, elektrony postanawiają wykorzystać okazję. Te lekkie i zwinne cząstki bez problemu uciekają z grafitowej pułapki. Po drodze zostawiają w telefonie standardową „opłatę” energetyczną i ponownie powracają do struktury tlenku kobaltu, któremu jak wiemy i tak jest wszystko jedno… Obojętny za to nie jest na pewno lit. Dzięki temu, że elektrony powoli znikają, maleje też siła trzymająca go między warstwami grafitu. Z drugiej strony kobalt karmiony elektronami również zapomina o wystosowanym wcześniej akcie nienawiści (to znaczy przestaje on być naładowany dodatnio i odpychać lit). Lepszej okazji nie będzie – jony litu opuszczają grafit i przedzierają się z powrotem przez separator, docierając wreszcie do przytulnych warstw kobaltu, wyłożonych mięciutką połacią tlenu. W ten oto sposób zakończył się cykl ładowania i rozładowania akumulatora, w trakcie którego jony litu przemierzyły jego wnętrze raz w jedną, raz w drugą stronę. Mechanizm ten nie bez powodu określa się mianem ,,bujanego fotela” (ang. rocking chair). Geniusz i prostota jakie stoją za tym pomysłem przyczyniły się do największej obok Internetu rewolucji XXI wieku – powstania akumulatora litowo-jonowego. Uproszczona animacja akumulatora litowo-jonowego Cena geniuszu Ogniwa litowo-jonowe to najwydajniejsze i najpotężniejsze akumulatory jakie do tej pory pojawiły się na rynku. Niestety jakość, jak to zwykle bywa, niesie ze sobą wysoką cenę. Skąd się ona bierze? Zacznijmy może od tego, że chęć litu do reagowania wszędzie i ze wszystkim sprawia, że jest on dość problematyczny w przechowywaniu i obróbce. Z tego samego powodu nie znajdziemy na naszej planecie litu w czystej postaci. Najczęściej odzyskuje się go ze związków chemicznych, takich jak chlorek litu (LiCl), wodorotlenek litu (LiOH) i węglan litu (Li2CO3). Nie jest to proces ani łatwy, ani wydajny. Do uzyskania kilograma czystego litu potrzeba aż 5,3 kg węglanu litu. Największe złoża tego surowca znajdują się w Boliwii (około 32% światowych zasobów), a do największych producentów czystego litu należą Chile, Chiny i Argentyna, produkując około kilogram litu w ciągu każdej sekundy jaką spędzasz na czytaniu tego artykułu. Do tego wyprodukowanie akumulatora z pierwiastka, który ma tak ogromną energię i tylko czyha na okazję, by z czymś przereagować wymaga zastosowania całej masy zabezpieczeń. Akumulatory Li-Ion nie lubią przegrzewania, przeładowania i nadmiernego rozładowania. Stąd naszpikowane są elektroniką trzymającą w ryzach parametry akumulatora. To jednak nie zawsze zdaje egzamin, bo wystarczy najmniejsze zanieczyszczenie litu lub błąd w trakcie produkcji, by wszystko zakończyło się efektownym pożarem. Słyszałeś może o aferze z wybuchającymi bateriami w Samsungach Galaxy Note 7? Swego czasu zabronione było wnoszenie tego smartfona na pokład samolotu, a firma Samsung rozsyłała klientom specjalnie zabezpieczone opakowania przeznaczone do zwrotu tego niebezpiecznego telefonu. Myślę jednak, że nie będziemy teraz wnikać w co bardziej szczegółowe aspekty techniczne akumulatorów Li-Ion. Te wolałbym poruszyć w osobnym, przeznaczonym do tego artykule. Mam nadzieję, że dzisiejsza podróż uświadomiła Ci jak te akumulatory działają i jakim wyzwaniem były dla uczonych pod koniec XX wieku. Następnym razem porozmawiamy o podtypach baterii Li-Ion, ich zastosowaniu, a także ogólnych wadach i zaletach. Czym różni się akumulator w smartfonie od tego w samochodzie elektrycznym? Czym tak naprawdę są następcy Li-Ionów, czyli baterie litowo-polimerowe? Czy baterie z wody morskiej mają szansę za chwilę zdetronizować ,,litówki”? Jeśli nie chcesz przegapić żadnego nadchodzącego artykułu, to zapisz się poniżej na newsletter lub polub moją moją stronę na facebooku. Do usłyszenia! Dzięki za poświęcony czas! Bibliografia Lithium Batteries Science and Technology – C. Julien, A. Mauger, A. Vijh, K. Zaghib, Handbook of Batteries Third Edition – D. Linden, T. Reddy, Akira Yoshino – Lithium-ion battery and its evolution – dokument dostępny pod adresem: Lithium Use in Batteries – T. Goonan, Department of the Interior, Geological Survey. – model 3D struktury tlenku kobaltu litu. How Does a Lithium-ion Battery Work? – Office of Energy Efficiency and Renewable Energy, adres: Podobało się? Zajrzyj na i wspieraj moją dalszą pracę! A może chciałbyś przeczytać ciekawą książkę? Powiadomić Cię o nowych artykułach? Polecam zapisanie się na newsletter lub zajrzenie na facebook’a. W ten sposób nie przegapisz żadnego nowego tekstu! W miarę jak ciche obroty pojazdów elektrycznych stopniowo zastępują warkot i szkodliwe dymy silników spalinowych, zachodzą liczne zmiany. Charakterystyczny zapach stacji benzynowych zniknie na rzecz bezwonnych stacji ładowania, gdzie samochody mogą doładować swoje baterie. W międzyczasie generatory gazowe mogą zostać zmodernizowane, by pomieścić akumulatory, które pewnego dnia będą mogły zasilać całe miasta energią odnawialną – pisze Allison Hirschlag dla BBC Future. Ta zelektryfikowana przyszłość jest znacznie bliżej niż mogłoby się wydawać. General Motors ogłosił na początku tego roku, że planuje zaprzestać sprzedaży pojazdów napędzanych gazem do 2035 roku. Celem Audi jest zaprzestanie ich produkcji do roku 2033, a wiele innych dużych firm samochodowych idzie w jego ślady. W rzeczywistości, według BloombergNEF, dwie trzecie światowej sprzedaży pojazdów osobowych będzie miało napęd elektryczny do 2040 roku. Systemy sieciowe na całym świecie szybko się rozwijają dzięki postępowi w technologii magazynowania energii w akumulatorach. Choć może się to wydawać idealnym rozwiązaniem, jest jeden duży problem. Obecnie baterie litowo-jonowe (Li-ion) są typowymi bateriami stosowanymi w pojazdach elektrycznych i mega-akumulatorach używanych do przechowywania energii ze źródeł odnawialnych, a baterie te są trudne do recyklingu. Co z recyklingiem baterii litowo-jonowych? Wraz z rosnącym popytem na pojazdy elektryczne, recykling baterii Li-ion stanie się wyzwaniem dla przemysłu akumulatorowego i motoryzacyjnego. Najpowszechniej stosowane metody recyklingu bardziej tradycyjnych akumulatorów (np. akumulatory kwasowo-ołowiowe) nie sprawdzają się w przypadku akumulatorów Li-ion. Te ostatnie są zazwyczaj większe, cięższe, dużo bardziej skomplikowane, a nawet niebezpieczne, jeśli zostaną źle rozebrane. Zazwyczaj części akumulatorów są rozdrabniane na proszek, a następnie proszek ten jest topiony lub rozpuszczany w kwasie. Ale baterie litowo-jonowe składają się z wielu różnych części, które mogą eksplodować, jeśli nie zostaną ostrożnie rozmontowane. A nawet jeśli zostaną rozłożone, produkty nie są łatwe do ponownego wykorzystania. Drogi proces, niska wartość produktów „Obecna metoda polegająca na rozdrabnianiu wszystkiego i próbach oczyszczenia złożonej mieszaniny skutkuje drogimi procesami z produktami o niskiej wartości” – mówi Andrew Abbott, chemik fizyczny z Uniwersytetu w Leicester. W rezultacie recykling kosztuje więcej niż wydobycie litu w celu wyprodukowania nowych. Ponadto, ponieważ tanie sposoby recyklingu baterii litowych na dużą skalę są opóźnione, tylko około 5 proc. baterii litowych jest poddawanych recyklingowi na całym świecie – większość z nich po prostu się marnuje. Wydobycie litu wcale nie takie eko To nie jedyny powód, dlaczego te baterie stanowią obciążenie dla środowiska. Wydobycie różnych metali potrzebnych do produkcji baterii Li-ion wymaga ogromnych zasobów. Do wydobycia jednej tony litu potrzeba ponad 2 mln litrów wody. W Chile, na solnisku Salar de Atacama, wydobycie litu zostało powiązane z zanikiem roślinności, wyższymi temperaturami w ciągu dnia i rosnącymi warunkami suszy na obszarach rezerwatów narodowych. Choć pojazdy elektryczne mogą przyczynić się do zmniejszenia emisji dwutlenku węgla w całym okresie ich użytkowania, zasilające je akumulatory rozpoczynają swoje życie z dużym śladem ekologicznym. Jeśli jednak miliony baterii Li-ion, które rozładują się po około 10 latach użytkowania, zostaną poddane bardziej efektywnemu recyklingowi, pomoże to zneutralizować cały ten wydatek. Kilka laboratoriów pracuje nad udoskonaleniem bardziej efektywnych metod recyklingu, tak aby w końcu standardowy, przyjazny dla środowiska sposób recyklingu baterii litowo-jonowych był gotowy do zaspokojenia gwałtownie rosnącego popytu. Nie możemy dłużej traktować akumulatorów jako jednorazowego użytku. Jak utylizować baterie Li-ion? Ogniwo baterii Li-ion ma metalową katodę, czyli dodatnią elektrodę, która zbiera elektrony podczas reakcji elektrochemicznej, wykonaną z litu i mieszanki pierwiastków, do których zazwyczaj należą kobalt, nikiel, mangan i żelazo. Posiada również anodę, czyli elektrodę, która uwalnia elektrony do obwodu zewnętrznego, wykonaną z grafitu, separator oraz pewnego rodzaju elektrolit, który jest medium transportującym elektrony pomiędzy katodą a anodą. Jony litu przemieszczające się od anody do katody tworzą prąd elektryczny. Metale w katodzie są najcenniejszymi częściami baterii i to na nich chemicy skupiają się podczas demontażu baterii Li-ion, aby je zachować i odnowić. Usprawnienie recyklingu akumulatorów Li, a w konsekwencji umożliwienie ponownego wykorzystania ich części, przywróci wartość już dostępnym akumulatorom. Dlatego właśnie naukowcy popierają proces bezpośredniego recyklingu – może on dać drugie życie najcenniejszym częściom baterii. Mogłoby to w znacznym stopniu zrównoważyć energię, odpady i koszty związane z ich produkcją. Jednak demontaż baterii Li-ion jest obecnie wykonywany głównie ręcznie w warunkach laboratoryjnych, co będzie musiało się zmienić, jeśli bezpośredni recykling ma konkurować z bardziej tradycyjnymi metodami recyklingu. „W przyszłości trzeba będzie wprowadzić więcej technologii do demontażu” – mówi Abbott. „Jeśli bateria jest montowana przy użyciu robotów, logiczne jest, że musi być demontowana w ten sam sposób” – dodaje. Zespół Abbotta z Faraday Institution w Wielkiej Brytanii prowadzi badania nad zrobotyzowanym demontażem baterii Li-ion w ramach projektu ReLib, który specjalizuje się w recyklingu i ponownym wykorzystaniu akumulatorów. Według badań zespołu, ultradźwiękowa metoda recyklingu może przetworzyć 100 razy więcej materiału w tym samym czasie niż bardziej tradycyjna metoda hydrometalurgii. Abbott twierdzi również, że można to zrobić za mniej niż połowę kosztów wytworzenia nowej baterii z pierwotnego materiału. Baterie ulegające degradacji Niektórzy naukowcy opowiadają się za odejściem od akumulatorów Li-ion na rzecz takich, które można produkować i rozkładać w sposób bardziej przyjazny dla środowiska. Jodie Lutkenhaus, profesor inżynierii chemicznej na Texas A&M University, pracuje nad akumulatorem wykonanym z substancji organicznych, które mogą ulegać degradacji na polecenie. Argumentuje, że nawet gdy bateria Li-ion zostanie rozebrana, a jej części zostaną odnowione, nadal pozostaną pewne części, których nie da się uratować i staną się odpadem. Akumulator degradowalny, taki jak ten, nad którym pracuje zespół Lutkenhaus, mógłby być bardziej zrównoważonym źródłem energii. Baterie organiczno-radiowe (ORB) istnieją od lat 2000 i funkcjonują dzięki materiałom organicznym, które są syntetyzowane w celu przechowywania i uwalniania elektronów. Zespół wykorzystuje kwas do rozkładu ORB na aminokwasy i inne produkty uboczne, jednak aby części uległy właściwemu rozkładowi, muszą panować odpowiednie warunki. „Odkryliśmy, że kwas w podwyższonej temperaturze działa” mówi Lutkenhause. Przed degradowalną baterią stoi jednak wiele wyzwań. Materiały potrzebne do jej stworzenia są drogie, a ponadto nie jest ona jeszcze w stanie zapewnić takiej ilości energii, jaka jest wymagana w zastosowaniach o dużym zapotrzebowaniu, takich jak pojazdy elektryczne i sieci energetyczne. Segregacja baterii Baterie Li-ion są wykorzystywane do zasilania wielu różnych urządzeń, od laptopów, przez samochody, po sieci energetyczne, a ich skład chemiczny różni się w zależności od celu, czasami znacząco. Powinno to znaleźć odzwierciedlenie w sposobie ich recyklingu. Naukowcy twierdzą, że zakłady recyklingu baterii muszą oddzielnie segregować baterie litowo-jonowe, podobnie jak sortuje się różne rodzaje plastiku podczas recyklingu, aby proces ten był najbardziej efektywny. Na rynek powoli, ale nieuchronnie wkraczają bardziej zrównoważone baterie. Producenci samochodów elektrycznych zaczęli również ponownie wykorzystywać swoje własne akumulatory na wiele różnych sposobów. Na przykład Nissan odnawia stare akumulatory do samochodów Leaf i umieszcza je w zautomatyzowanych pojazdach z napędem, które dostarczają części do jego fabryk. Przyszłe wyzwania Stale rosnące zapotrzebowanie rynku na pojazdy elektryczne sprawia, że firmy z całego przemysłu motoryzacyjnego wydają miliardy dolarów na zwiększenie trwałości akumulatorów Li-ion. Jednak Chiny są obecnie zdecydowanie największym producentem akumulatorów litowo-jonowych. Z kolei wykorzystanie technologii sztucznej inteligencji do odnawiania najbardziej użytecznych części mogłoby pomóc krajom o niewielkich dostawach komponentów do baterii Li-ion, aby nie musiały one tak bardzo polegać na Chinach. Opracowanie nowych baterii, które mogłyby konkurować z bateriami Li, również prawdopodobnie wstrząśnie branżą poprzez stworzenie zdrowej konkurencji. Pojawienie się mniej skomplikowanego, bezpieczniejszego akumulatora, który jest tańszy w produkcji i łatwiejszy do oddzielenia po zakończeniu eksploatacji, stanowi ostateczną odpowiedź na obecny problem zrównoważonego rozwoju pojazdów elektrycznych. Jednak do czasu pojawienia się takiej baterii, standaryzacja recyklingu baterii Li-ion jest znaczącym krokiem we właściwym kierunku – podsumowuje BBC Future. Baterie mają kluczowe znaczenie w globalnej transformacji gospodarczej ze względu na ich zdolność do zachowania równowagi między podażą a popytem na energię elektryczną. Podstawą dekarbonizacji świata i walki ze zmianami klimatu jest elektryfikacja zasilana przez odnawialne źródła energii, w tym elektryfikacja samochodów (e-mobilność), budynków i miast. Sposobem osiągnięcia ekologicznej gospodarki jest zwiększenie wykorzystania energii słonecznej, wiatrowej, wodnej i innych technologii niskoemisyjnych, takich jak samochody elektryczne, systemy magazynowania energii oraz wykorzystanie mikrosieci i inteligentnych sieci. Elektryfikacja może przyczynić się do zatrzymania globalnego ocieplenia poprzez wyeliminowanie z otoczenia gazów cieplarnianych. Akumulatory są jednym z kluczowych źródeł energii w zrównoważonej przyszłości energetycznej, dlatego warto przyjrzeć się ich znaczeniu i zastosowaniom. Przedstawimy niektóre z produktów RND – marki, która zapewnia klientom kompleksowy asortyment produktów elektronicznych, elektrycznych i konserwacyjnych w atrakcyjnych cenach. Zaproponujemy również produkty marki Hy-Line, która również oferuje innowacyjne technologie w konkurencyjnych cenach. Akumulatorowe systemy magazynowania energii – baterie litowo-jonowe Ze względu na rosnące zapotrzebowanie na technologie zapewniające czystą energię, takie jak akumulatory, turbiny wiatrowe, panele słoneczne czy pojazdy elektryczne, przewiduje się, że wydobycie minerałów litu, kobaltu i grafitu ogromnie wzrośnie. Obecny postęp technologiczny i inicjatywy mające na celu elektryfikację gospodarki polegają w dużej mierze na bateriach litowo-jonowych (Li-ion). Ze względu na swoją wyższą wydajność, efektywność i bezpieczeństwo w porównaniu do tradycyjnych baterii, stały się one preferowanym źródłem zasilania większości samochodów elektrycznych. Szybka reakcja, modułowa konstrukcja i możliwość dostosowania instalacji akumulatorów umożliwiają dekarbonizację przemysłu transportowego i rosnącą integrację sieci z niestabilnymi technologiami energii odnawialnej. Katoda (elektroda dodatnia), anoda (elektroda ujemna) i elektrolit służą jako przewodniki w bateriach litowo-jonowych. Ten typ baterii jest obecnie wykorzystywany w wielu urządzeniach, od telefonów komórkowych i komputerów po samochody elektryczne. Baterie te są znacznie lżejsze, mniejsze i lepiej utrzymują ładunek niż wcześniejsze wersje akumulatorów. Co więcej, na całym świecie koszty akumulatorów szybko spadają. Jak podaje IRENA (Międzynarodowa Agencja Energii Odnawialnej), na przykład w Niemczech koszty baterii Li-ion stosowanych w małych gospodarstwach domowych spadły o ponad 60% od końca 2014 roku. Rola akumulatorów w systemach magazynowania energii Dzięki akumulatorom przedsiębiorstwa użyteczności publicznej i operatorzy sieci mogą zapewnić niezawodność systemu elektrycznego, wypełniając luki pozostawione przez zmienną wydajność elektrowni wiatrowych i słonecznych oraz zapobiegając marnowaniu nadmiaru energii. Według organizacji IRENA, oprócz reagowania na zmiany częstotliwości, zapewnienia rezerwy mocy, możliwości rozruchu autonomicznego (przywrócenia systemu elektroenergetycznego) i innych funkcji sieciowych, systemy akumulatorowe mogą również przyczyniać się do unowocześniania minisieci, zapewnienia samowystarczalności budynków. Jest to możliwe dzięki wykorzystaniu energii z paneli słonecznych oraz przechowywaniu energii elektrycznej w pojazdach elektrycznych. Magazynowanie energii Wykorzystanie akumulatorów w energetyce odnawialnej jest szczególnie ważne, ponieważ energia słoneczna i wiatrowa to wciąż niestabilne źródła, które produkują zmienne ilości energii. Akumulatory pozwalają na przechowywanie i wykorzystywanie jej w bardziej ekonomiczny sposób, w przypadku braku wiatru lub słońca. Jak podaje Komisja Europejska, to właśnie baterie, które są technologią magazynowania o najszybszym tempie wzrostu, będą miały kluczowe znaczenie dla osiągnięcia unijnego celu 55% redukcji emisji gazów cieplarnianych do 2030 roku. Transport (e-mobilność) Przewiduje się, że w najblizszych latach liczba pojazdów zasilanych bateriami znacznie wzrośnie. Pojazdy elektryczne i zasilające je akumulatory przyczyniają się nie tylko do eliminacji paliw kopalnych, ale także do zwiększenia ilości niestabilnej energii odnawialnej w systemach sieciowych. Ponieważ akumulatory pozwalają na długoterminowe magazynowanie energii, możliwe jest, że podaż energii odnawialnej przewyższy zapotrzebowanie na energię elektryczną z sieci w dni szczególnie słoneczne lub wietrzne. Akumulatory litowo-jonowe stały w ciągu ostatnich dwóch dekad najczęściej stosowanymi akumulatorami do zasilania pojazdów elektrycznych. Według Światowego Forum Ekonomicznego, zapotrzebowanie na baterie litowo-jonowe do zasilania pojazdów elektrycznych i magazynowania energii gwałtownie wzrosło, z około 0,5 GWh w 2010 roku do prawie 526 GWh dekadę później. Dowiedz się więcej o najczęściej używanych bateriach EV tutaj. Elektryfikacja jest głównym elementem dekarbonizacji transportu. Zgodnie z założeniami planów 2030 Net Zero, wszystkie nowe lekkie pojazdy powinny emitować zero zanieczyszczeń. Jednak nie wszystkie państwa wyznaczają takie same cele. W naszym Indeksie gotowości na pojazdy elektryczne możesz sprawdzić, jak postępy w elektryfikacji pojazdów przebiegają w poszczególnych krajach. Magazynowanie energii w sieci Pojazdy elektryczne będą wykorzystywane nie tylko do transportu, ale także obniżą koszty energii elektrycznej dla tych, którzy zaopatrzyli się w dachowe panele słoneczne, niezależnie od tego, czy są to inwestorzy publiczni, korporacyjni czy indywidualni. Przy wysokich stawkach za energię elektryczną, prąd z akumulatorów zaparkowanych samochodów można wykorzystać do celów domowych lub nawet sprzedać do sieci. Dowiedz się więcej o mikrosieciach elektroenergetycznych i ich roli w zapewnieniu przyszłej autonomii energetycznej. Akumulatory Wszystkie baterie wyrzucane na wysypiska śmieci wydzielają toksyczne pierwiastki, takie jak rtęć, ołów i kadm, zanieczyszczając glebę i wodę. Akumulatory są znacznie mniej szkodliwe dla środowiska, ponieważ dzięki nim produkuje się mniejszą ilość baterii. Jeden akumulator może zastąpić tysiące jednorazowych ofercie RND Power znajduje się szeroka gama zasilaczy, przetwornic AC/DC, ładowarek, akumulatorów i wielu innych artykułów elektronicznych. Na przykład, akumulatory kwasowo-ołowiowe RND dostępne w wielu rozmiarach i napięciach są najbardziej ekologiczną technologią akumulatorową. Zazwyczaj są wykonane z ponad 90% materiałów pochodzących z recyklingu akumulatorów ołowiowych, co sprawia, że ta technologia magazynowania energii ma najmniejszy wpływ na środowisko. Akumulatory kwasowo-ołowiowe, RND Ładowarki do akumulatorów, RND Ładowarka do akumulatorów, kwasowo-ołowiowa, RND Power Akumulatorki, RND Akumulatory HY-Line pozwalają na monitorowanie wielu istotnych parametrów akumulatora. Dzięki akumulatorom HY-Di można monitorować akumulatory litowo-jonowe z dowolnego miejsca i w dowolnym czasie za pośrednictwem Internetu. Jest to możliwe dzięki magistrali SM- lub CAN oraz specjalnemu interfejsowi HY-Di Battery Interface (HBI) dostępnemu z poziomu przeglądarki internetowej. Inteligentne akumulatory litowo-jonowe, HY-Di, HY-Line Inteligentna ładowarka do akumulatorów HY-Di Przyszłość zelektryfikowanego świata Mówi się, że przyszłość jest elektryczna. Nie ulega wątpliwości, że już niedługo świat będzie w większości lub nawet w całości zasilany elektrycznie. Ze względu na rosnące zapotrzebowanie na baterie konieczne są sposoby obniżenia kosztów ich wytwarzania, dzięki czemu światowa produkcja baterii i technologii elektrycznych zaspokajałaby popyt. Aby to osiągnąć, konieczny jest sposób na obniżenie ilości metali niezbędnych do produkcji baterii. Metale te są często drogie i trudne do pozyskania, a co więcej ich wydobycie ma negatywny wpływ na środowisko. Aby zielona transformacja stała się możliwa, należy postawić na recykling, w tym usprawnić recykling baterii. Najczęściej zadawane pytania Dlaczego akumulatory są ważne z punktu widzenia energii odnawialnej?Akumulatory są głównym sposobem przechowywania energii odnawialnej. Tymczasem ich rozwój wyraźnie nie nadąża za rozwojem energetyki wiatrowej i słonecznej, mimo że bez baterii technologie te działają z ograniczoną wydajnością. Dzięki akumulatorom można gromadzić dodatkową energię elektryczną i przechowywać ją w okresach pogorszenia pogody. Jaką rolę odgrywają akumulatory w wykorzystaniu odnawialnych źródeł energii, takich jak energia słoneczna i wiatrowa?Podczas korzystania z odnawialnych źródeł akumulatory umożliwiają dostawcom energii elektrycznej gromadzenie dodatkowej energii i przechowywanie jej w okresach, gdy panele słoneczne i turbiny wiatrowe nie są wystarczająco wydajne. Dlaczego akumulatory są istotne w przejściu do systemu energetycznego o zerowej emisji dwutlenku węgla netto?Proces przechodzenia na bardziej ekologiczne rozwiązania skoncentruje się na odnawialnych źródłach energii – produkowana w ten sposób energia najczęściej jest magazynowana w akumulatorach. Ze względu na postępy w technologii akumulatorów, stają się one kluczowym elementem zrównoważonego transportu przyszłości. Co więcej, energia zgromadzona w akumulatorach samochodowych może być wykorzystana zarówno do zasilania domu, jak i do stabilizacji sieci. Jakie akumulatory są wykorzystywane w energetyce odnawialnej?Obecnie najbardziej rozpowszechnione są akumulatory kwasowo-ołowiowe i litowo-jonowe o głębokim cyklu rozładowania. Stanowią one dwa najważniejsze rozwiązania w zakresie przechowywania energii odnawialnej. Dlaczego technologia akumulatorów jest tak ważna w kontekście samochodów elektrycznych?Akumulator w pojeździe elektrycznym to urządzenie gromadzące energię, która jest dostarczana do silnika za pomocą prądu zmiennego lub ciągłego. Ponieważ pojazdy elektryczne wykorzystują akumulatory zamiast paliw kopalnych, stały się bardziej zrównoważonym środkiem transportu. Jakie akumulatory są stosowane w samochodach elektrycznych?Pojazdy całkowicie elektryczne, hybrydowe pojazdy elektryczne typu plug-in (PHEV) oraz hybrydowe pojazdy elektryczne wymagają technologii magazynowania energii, najczęściej akumulatorów (HEV). W hybrydach typu plug-in i pojazdach całkowicie elektrycznych zwykle spotykane są akumulatory litowo-jonowe. Jak akumulatory przechowują energię?Akumulator to rodzaj zbiornika energii, który przechowuje energię chemiczną, aby później przekształcić ją w energię elektryczną. W każdym akumulatorze znajduje się jedno lub więcej ogniw elektrochemicznych. Wewnątrz takich ogniw zachodzą reakcje chemiczne, powodujące przepływ elektronów w obwodzie. W ten sposób powstaje prąd elektryczny. Jak wykorzystuje się energię z akumulatorów?Akumulator to urządzenie, które przechowuje energię chemiczną i przekształca ją w energię elektryczną. Podczas reakcji chemicznych zachodzących w akumulatorach elektrony przemieszczają się z jednej substancji (elektrody) do drugiej poprzez zewnętrzny obwód. Prąd elektryczny może być tworzony przez przepływ elektronów i wykorzystywany do realizacji określonych zadań. Czy akumulatory są odnawialnym źródłem energii?Pomimo tego, że korozja baterii uwalnia substancje chemiczne, które zanieczyszczają wody gruntowe i powierzchniowe, a także glebę, akumulatory można wykorzystywać wielokrotnie. Jeden akumulator może zastąpić tysiące jednorazowych baterii, dlatego też akumulatorki skutecznie obniżają emisję dwutlenku węgla. Czy baterie są poddawane recyklingowi?Baterie jednorazowe lub wielokrotnego użytku, takie jak baterie guzikowe i litowe, mogą być poddawane recyklingowi, jednak dostęp do punktów recyklingu nie wszędzie jest możliwy. Niektóre baterie są poddawane recyklingowi częściej niż inne. Prawie 90% wszystkich baterii kwasowo-ołowiowych jest poddawanych recyklingowi. Czy akumulatory kwasowo-ołowiowe są zrównoważonym źródłem energii?Ze względu na zamknięty cykl życia i możliwość wielokrotnego użycia, akumulatory kwasowo-ołowiowe są zrównoważonym rozwiązaniem. Zużyty akumulator samochodowy trafia do autoryzowanego zakładu recyklingu, gdzie wszystkie części są odzyskiwane, poddawane recyklingowi i sprzedawane producentom akumulatorów. Akumulatory samochodowe mogą być poddawane recyklingowi w nieskończoność. Należy jednak pamiętać, że w przypadku niewłaściwej utylizacji akumulatory kwasowo-ołowiowe mogą być niebezpieczne zarówno dla zdrowia ludzi, jak i dla środowiska. Branża automotive, Baterie samochodowe, Automatyzacja procesówKomponenty z EPP w produkcji baterii litowo-jonowych do samochodów elektrycznych – zastosowania i korzyści 30 grudnia 2020 Producenci samochodów elektrycznych najczęściej wybierają akumulatory litowo-jonowe (Li-Ion), gdyż pozwalają one przejechać więcej kilometrów w porównaniu do innych technologii. Choć w tym przypadku nie występuje efekt pamięci, a żywotność LITOWO-JONOWYCH baterii samochodowych jest duża, powinny być eksploatowane w odpowiednich warunkach. Czym są baterie litowo-jonowe i jak je chronić? Baterie litowo-jonowe po raz pierwszy zastosowano do zasilania kamer na początku lat 90. i od tamtego czasu zaczęły się szybko rozpowszechniać. Ich sporą przewagą w stosunku do baterii wodorkowych czy niklowo-kadmowych jest większa gęstość energii. Oznacza to, że są w stanie przechować jej więcej w przeliczeniu na każdy kilogram ogniwa. Ponadto ta technologia ma jeszcze spory potencjał rozwoju – ocenia się, że tego typu baterie już za dekadę będą w stanie magazynować dwu- lub trzykrotnie więcej energii, do 300-350 Wh/kg. Jednocześnie ich produkcja jest relatywnie tania. Baterie litowo-jonowe są bardzo trwałe i żywotne, jednak niesprzyjające warunki eksploatacji czy przechowywania mogą skrócić czas ich eksploatacji lub nawet doprowadzić do ich awarii. Są one wrażliwe szczególnie na skrajne temperatury, przed którymi chronią je między innymi montowane w samochodach nowoczesne układy chłodzenia i podzespoły z innowacyjnych pianek izolacyjnych z ekspandowanego polipropylenu (EPP). Zobacz też: Know-how w dziedzinie rozwoju tworzyw i formowania wtryskowego – ponad 30 lat doświadczenia Knauf Industries Automotive Jak działają akumulatory litowo-jonowe? BudowaI BEZPIECZEŃSTWO baterii LI-Ion w samochodzie elektrycznym Komponenty z EPP w budowie akumulatora do samochodu elektrycznego Stosowane w bateriach samochodów elektrycznych ogniwa litowo-jonowe posiadają dwie elektrody – dodatnią i ujemną. Są one rozdzielone elektrolitem w formie cieczy, żelu lub ciała stałego, którego funkcją jest przenoszenie ładunków między nimi. Dostępne na rynku baterie litowo-jonowe mogą się różnić składem chemicznym i konstrukcją, jednak we wszystkich przypadkach nośnikiem ładunku są jony litu. Ich producenci wciąż pracują nad zwiększeniem gęstości energii, poszerzeniem zakresu temperatury pracy, skróceniem czasu ładowania czy przede wszystkim bezpieczeństwem użytkowania. Chodzi o to, by nie dopuścić do nadmiernego wzrostu temperatury elektrolitu, czemu zapobiegają specjalne domieszki, aktywne układy chłodzenia w samochodzie czy też stosowane w budowie akumulatora innowacyjne izolatory. Aby zapobiec potencjalnemu zagrożeniu zamiast dużych akumulatorów w samochodach elektrycznych montuje się zestawy nawet kilku tysięcy małych ogniw litowo-jonowych, które są odizolowane od innych podzespołów. W ten sposób nawet jeśli dojdzie do awarii jednego z nich, nie dochodzi do dalszej emisji ciepła czy zwarć elektrycznych między poszczególnymi celami. Zestawy są ponadto montowane w samochodach w taki sposób, aby były jak najmniej narażone na uszkodzenia. Czytaj więcej: Rodzaje akumulatorów do samochodów elektrycznych – który z nich jest najlepszy? Jak ZWIĘKSZYĆ WYTRZYMAŁOŚĆ baterii LITOWO-JONOWYCH w samochodzie elektrycznym? Z tworzywa EPP produkowane są także specjalne pojemniki transportowe na baterie samochodowe i wrażliwą elektronikę Żywotność baterii w samochodach elektrycznych na ogół szacuje się na 10 lat eksploatacji, co daje około 2500-3500 cykli ładowania. W zależności od zastosowanych technologii i sposobu użytkowania czas ten może być nawet dłuższy. Po pierwsze, nie należy dopuszczać do całkowitego rozładowania akumulatora. Samochód pobiera energię nie tylko podczas jazdy, ale także w czasie postoju. Wielomiesięczna przerwa w użytkowaniu może skutkować nawet uszkodzeniem akumulatora. Dlatego, aby uniknąć ponoszenia kosztów wymiany baterii w samochodzie elektrycznym, powinien powinno się je co jakiś czas ładować, nawet podczas gdy nie używamy samochodu. Z drugiej strony akumulatora litowo-jonowego nie należy ładować w 100%. Zalecany poziom naładowania baterii mieści się w przedziale 20-80%. Na stan akumulatora najlepiej wpływa ładowanie z niewielką mocą. Korzystanie ze stacji szybkiego ładowania samochodów elektrycznych wysokiej mocy skraca żywotność baterii. Kolejnym ważnym czynnikiem jest temperatura – zarówno upały, jak i mrozy źle wpływają na kondycję baterii litowo-jonowej. Dopuszczalny zakres temperatur ich pracy wynosi od 0 do 45°C, przy czym wskazane jest by ta druga wartość nie przekraczała 30°C. Dlatego tak duże znaczenie dla stanu baterii mają zastosowane w jej konstrukcji materiały izolacyjne. Z bardzo przyszłościowych warto wyróżnić spieniony polipropylen EPP, który już dziś znajduje zastosowanie zarówno jako surowiec do produkcji opakowań ochronnych na baterie, jak i komponentów izolacyjnych w zestawach akumulatorowych. Spieniony polipropylen – innowacyjna izolacja akumulatora Stosowane w samochodach baterie litowo-jonowe są wrażliwe zarówno na czynniki termiczne, jak i mechaniczne, dlatego muszą być przechowywane, transportowane i eksploatowane w warunkach zapewniających ich jak najdłuższą żywotność. Materiałem, który okazał się szczególnie skuteczny we wszystkich tych zastosowaniach, jest spieniony polipropylen (EPP). Doskonale sprawdził się przy produkcji opakowań do transportu baterii, gdyż posiada doskonałe właściwości termoizolacyjne i skutecznie chroni zawartość przed uszkodzeniami mechanicznymi. Dostosowane do wymagań branży automotive opakowania Komebac® mogą być pod każdym względem dopasowane do kształtu i wymiarów baterii litowo-jonowych oraz posiadać specjalne ochronne wkładki. W ten sposób baterie są zabezpieczone w 100% – nie tylko przed przenikaniem ekstremalnych temperatur podczas transportu, ale także wilgocią i wstrząsami. Materiał doskonale pochłania uderzenia, nie ulega rozpadaniu się czy odkształceniom. Wszystko to spowodowało, że znalazł teraz zastosowanie także przy produkcji baterii, jako surowiec do wytwarzania samochodowych zestawów akumulatorowych. Obecnie produkuje się z niego separatory cel akumulatorowych, specjalne izolacje oraz szyny mocujące. Pianka EPP jest również doskonałym izolatorem elektrycznym, dzięki czemu skutecznie zapobiega niekontrolowanemu przepływowi prądu pomiędzy celami i awarii akumulatora.

baterie litowo jonowe do samochodów elektrycznych